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In discontinuous composites, the fiber end effects can be neglected when the length of fiber is 

much greater compared to the diameter. Thus, conventional shear lag theory is very useful for 

predicting composite properties deduced from each constituent. However, in the case of  short 

fiber or whisker reinforced composites, the end effects cannot be neglected, and the composite 

properties are functions of material and geometrical parameters since the fiber end effects 

significantly influence the behavior of composites. For  a good understanding of  the behavior of  

short fiber or whisker reinforced composites, it is necessary to first understand the mechanism 

of stress transfer and it has well been modified before. However, the modification was limited 

to the basic elastic stress calculation of the fiber and matrix in a micromechanical model. 

Accordingly, the former modification of  the shear lag model has been extended to predict the 

overall elastic composite behavior and elastic-plastic behavior of  which result can predict the 

stress concentration in the matrix as well as the onset of matrix yielding. The extended 

modification results showed that it gives a good agreement with finite element analysis as well 

as with experimental data. It was also found that the local matrix yielding is initiated in the 

vicinity of the fiber ends which produces local plasticity and an elastic-plastic transition before 

the composite stress reaches matrix yield stress. 

Key Words :  Shear Lag Theory, Discontinuous Composite, Fiber Aspect Ratio, Elastic 

Behavior, Stress Concentration, FEA, Matrix Yielding 

I. In troduct ion  

Composites, man-made material in which two 

or more constituents are combined to create a 

material with properties different from that of 

either constituent, have been excited for thou- 

sands of  years (Nair et al., 1985). The objective of 

fabricating composites is to improve mechanical 

properties such as strength, stiffness, toughness 

and high temperature performance. Therefore, it 

is natural to study composites that have a com- 

mon strengthening mechanism. 

In these composites, loads are not directly 
applied to the fibers but are applied to the matrix 

material and transferred to the fibers through the 
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fiber ends and also through the cylindrical surface 

of the fiber near ends (Piggot, 1980). The stress 

transfer is mainly due to the shearing mechanism 

through the cylindrical surface of the fiber near 

ends if the fiber aspect ratio is not small, which 

induces the conventional shear lag (SL) theory 

(Cox, 1952). The SL model, which considers 

long straight discontinuous fibers completely em- 

bedded in a continuous matrix, is originated from 

Cox. 

However, a major shortcoming of  the Cox 

model is in its inability to provide sufficiently 

accurate predictions when the fiber aspect ratio is 

small. The predicted modulus by the SL model is 

substantially smaller than the experimentally 

observed modulus increase in this regime. This is 

the regime applicable to major current short fiber 

or whisker reinforced composites. For example, 

in SiC whisker reinforced A1 alloys, the average 



258 Hong Gun Kim 

aspect ratio is only on the order of four (Ar- 

senault, 1984, Nair et al., 1985, Nutt and Need- 

leman, 1987), and for this case the original SL 

model does not provide an adequate description 

of the stiffening effect of fibers or whiskers as 

discussed by Taya and Arsenault (1987). 

Following the the Cox model, rigorous elastic- 

ity models based on a variational approach 

(Hashin and Shtrikman, 1962, 1963) and self- 

consistent method (Hill, 1965a) were developed 

in order to predict the elastic moduli increases in 

the small aspect ratio regime. The variational 

method originally developed by Paul (1960) 

provides proper bounds to the elastic moduli 

increases but not to the local stress values in the 

fiber and surrounding matrix. In fact, the self- 

consistent model was first developed by Hershey 

(1954) and Kroner (1958) as a means to model 

the behavior of polycrystalline materials, and an 

extension of the self-consistent scheme to multi- 

phase media was given by Hill (1965b) and 

Budiansky (1965). This method provides an 

approximate prediction of composite elastic 

response that explicitly accounts for phase geome- 

try. Eshelby's ell ipsoidal inclusion method 

(Eshelby, 1957) is a basic solution of this type 

and has also been successfully applied to predict 

both the modulus and yield strength of short fiber 

composites (Taya and Arsenault, 1987). 

However, this model is restricted to ellipsoidal 

reinforcement geometries in which the internal 

reinforcement stress is assumed to be uniform. It 

is well known that for the case of rod- l ike  fiber 

geometries, uniform reinforcement stresses are 

obtained only at sufficiently large aspect ratios. 

Furthermore, the shear stress transfer gives rise to 

known variations of the fiber axial stresses 

(Piggot, 1980). Accordingly, the SL approach is 

physically more realistic for fiber geometries 

provided that fiber end effects can be rigorously 

accounted for. 

There have been limited previous attempts to 

modify the SL approach. Muki and Sternberg 

(1969) and Sternberg and Muki (1970) used the 

SL approach in a more refined manner using 

integro-differential equations and have calcu- 

lated the local stresses inside the fiber. However, 

this model assumed that the fiber center stress is 

given by the rule of mixture equation strictly 

applicable only to the long fiber case. Further- 

more, Sternberg's results cannot be applied to 

obtain expressions for the matrix stress intensifi- 

cation in the fiber end region which provides a 

significant contribution to the elastic modulus 

(Halpin, 1984 and Hashin, 1983). 

Nardone and Prewo (1986) and Nardone 

(1987) attempted to modify the SL model by 

assuming that the fiber end stress, was equal to 

the matrix yield stress and that the matrix average 

stress was also equal to the matrix yield stress. 

The calculation using this model showed quite 

crude results in AI /SiC composites (Taya and 

Arsenault, 1987). 

Taya and Arsenault (1989) also attempted to 

modify the original SL approach by assuming 

that the fiber end stress was equal to the average 

matrix stress, i. e., the stress concentration at the 

fiber ends were ignored. The prediction of this 

limited modification is compared to that of the 

rigorous model presented below. 

Recently, Kim and Nair (1990) also modified 

the SL analysis by using FEA to provide the fiber 

end normal stresses. While their work clearly 

demonstrates that SL solutions are applicabe to 

short fiber composites provided fiber end effects 

are accounted for, the model does not calculate 

the fiber end stresses from first principles and 

relies instead on FEA. 

More recently, Kim (1994) derived the 

modified shear lag (MSL) theory showing elastic 

stress transfer mechanism using fictitious fiber 

concept. The approach in his work involved 

replacing the matrix region between fiber ends 

with a fictitious fiber having the same elastic 

properties as the matrix and developing conven- 

tional SL solutions for both the real and ficti- 
tious fiber. Suitable interfacing of these solutions 

provides the needed results for the local stress and 

strain values. The model is therefore entirely 

closed form in nature and does not rely on F E A  

for any parametric values. 

The purpose of this study is to extend a 

straightforward yet rigorous derivation of the 

MSL analysis to predict the overall elastic behav- 
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ior and the elastic-plastic transition so as to 

monitor the onset of matrix yielding. It was 

attempted to retain accuracy at both small and 

large fiber aspect ratio values by taking fiber end 

effects into account even in the elastic-plastic 

transient state. An axisymmetric FEA model 

along with experimental data have been im- 

plemented to evaluate the predictions of the ana- 

lytical model derived in this paper. 

2. Analytical Approach 

the short fiber embedded in a continuous matrix 

is shown in Fig. 1. 

As can be seen in the figure, the RVE has 

length 2L, diameter D, fiber length 2l, and fiber 

diameter d. Hereafter, the axial directs.on is ex- 

pressed as x instead of z for convenience. The 

rationale for the modification is an attempt to 

understand the elastic behavior of composites 

taking fiber end stress transfer into account as 

shown in Fig. 2. 

The conventional SL model is based on the 

concept that fiber tensile stresses are governed by 

an interfacial shear stress parallel to the fiber 

surface. The theory is described in the paper of 

Kim (Kim, 1994). A micromechanical model 

deduced from physical concepts is described as 

follows. The discontinuous short fibers or whis- 

kers are considered to be uniaxially aligned with 

the stress applied in the axial direction of the 

fibers. The fiber/matrix bond is assumed to be 

large, and no debonding is allowed in keeping 

with the actual situation in many MMCs (Ar- 

senault, 1983). Further, no plastic yielding is 

allowed; that is, both matrix and fiber deform in 

a purely elastic manner. The composite unit cell 

or representative volume element (RVE) showing 
Fig. 1 
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Fig. 2 Concept of the modification process introducing fictitious fiber or whisker. 
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The RVE of MSL model. Matrix end gap regions are replaced by fictitious fiber or whisker to 
maintain the displacement and traction compatibility in the MSL model. 

The modified composite unit cell (RVE) show- 

ing the short fiber embedded in a continuous 

matrix is shown in Fig. 3. The actual, or real, 

fiber has radius and length 2L. On either end of  

the fiber we assume a fictitious fiber of diameter 

2 r  and length g equal to half the spacing between 

the fiber ends in the composite. The outer surface 

of the unit cell can be said to have a hexagonal 

contour, although, the exact shape is not critical 

in this model. The unit cell is treated as an 

equivalent cylinder with radius /?. The spatial 

variable for the real fiber is x, with the coordinate 

origin at the fiber center, whereas the spatial 

variable for the fictitious fiber is x* with the 

coordinate origin at the fiber end. The different 

origins are necessary because, as will be shown, 

the governing differential equations in the region 

of the real and fictitious fiber are different and 

consequently there can be no overlap of  the x and 

x* domains. The two domains are in contact at x 

= L ,  or x * = 0 ,  at which point proper boundary 

conditions need to be applied. Note in the follow- 

ing that all variables associated with the fictitious 

fiber will be denoted with a superscript , .  At the 

far end of the unit cell, that is, at the surface x * =  

g,  a uniform constant  compos i t e  s train ~c is 

applied. Under these conditions, as shown in 

detail in the SL model (Piggot, 1980), the govern- 

ing equation for the fiber stress, a/,  and the fiber/  

matrix interfacial shear stress, rs, can be given by 
the same type. (Kim, 1994). 

As derived from the previous study (Kim, 

1994), the combination of equilibrium conditions 

and Hook's Law gives a governing differential 

equation for the real fiber or whisker as below : 

d2 a/ n z 
dx 2 --  r 2 ( a / - E / s c )  (1) 

where 

n2 = Em 
E / ( 1  + Vm) ln(R/r)  (2) 

Here Em and E /  are Young's moduli of the 

matrix and fiber, respectively, ]/i is the volume 

fraction of  fiber and vm is Poisson's ratio for the 

matrix. As mentioned above, R is the unit cell 

radius. Hence, the governing differential equation 

for the fictitious fiber or whisker is given by 

d2a~  n *~ 
d~c,2 --  7.2 (o ] - -E /E*)  (3) 

Since By:Era one obtains 

n , 2 :  1 
(1+  Um) ln(R/r)  (4) 

Equations (1) and (3) admit the solution as 

shown below. Detailed procedures of the deriva- 

tion can be found in the previous paper (Kim, 

1994). 

a/= E/Ec + A sinh (nx/ r) 
+ B cosh(nx/ r) (5) 

a] =Emec+ A*sinh(n* x*/ 7.) 
+ B* cosh(n* x*/r) (6) 

n r ~ :  - y B  sinh(nx/r) (7) 

v* = - ~ - [ A *  cosh(n* x*/ r) 
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+ B*sinh  ( n ' x * / r )  ] (8) 

Here, A*=f=0 since the end regions do not 

possess the symmetry of  the fiber because of the 

coordinate change. Therefore, the three unknown 

constants in Eq. (5) to (8) are B, A* and B*, 

which can be simply determined using the follow- 

ing boundary conditions. To satisfy displacement 

and traction compatibility: 

a : : a f i  at x = L  or x * = 0  (9) 

da: da~ 
dx - dx* at x = L  or x * = 0  (10) 

r s* :0  at x * : g  (11) 

The first condition sets the fiber/matrix inter- 

facial normal stress at the fiber end to be the same 

in both regions. The second requires that the 

shear stress at the fiber/matrix interface also be 

the same in the limit x--~ L and x*----0. These 

are necessary continuity conditions. The final 

condition is based on the iso-strain condition of 

the problem, namely, that the applied strain is 

uniform across the transverse boundary of the 

RVE at x* = g .  This requires that the shear stress 

be also zero at x * = g .  it can then be shown that 

the unknown constants are given by: 

A = O  (12) 

(Era -- E:)  Ec 
B =  cosh (ns )  + ( n / n * ) s i n h ( n s ) c o t h ( n  * s*) 

(13) 

A * =  - -B*  tanh(n*s*)  (14) 

B * = - - B ( n / n * ) s i n h ( n s ) c o t h ( n * s * )  (15) 

where s ( = L / r )  is the fiber aspect ratio and s* 
( : g / r )  is the aspect ratio of the fictitious fiber. 

Hence, the fiber maximum stress a:m can be 

obtained by setting x = 0  in Eq. (5): 

(Yyra : E f E c  + B (16) 

In the same manner, the fiber end stress ai can 

also be obtained by setting x * : 0  in Eq. (6), 

namely: 

ai= Em~c + B* (17) 

Hence B* can be expressed as a function of  ~c 

and the result is given by 

~L : (Em + C) ec (18) 

where 

C =  ( E ~ - E : )  ( n / n * ) s i n h ( n s ) c o t h ( n *  s*) 
cosh(ns )  + ( n / n * ) s i n h ( n s ) c o t h ( n * s * )  

(19) 

Therefore, Eq. (18) represents the interracial 

stress between the real fiber and the fictitious 

fiber. As presumed, it is proport ional  to the 

composite strain. On this basis the stress concen- 

tration factor in the matrix Kt can be calculated 

in closed form as 

Kt : o'__(_,. 
0"m 

O'i 
Em~c 

C (20) 
=1-~ Em 

Here, a-~- denotes the average stress of  the 

matrix. It is important that the stress intensifica- 

tion in the fictitious fiber region is represented by 

Eq. (20). The composite stress can be determined 

from the rule of averages or the rule of  mixture 

(ROM) as 

a~= V:a:+ Vma= 
= V : *  + V; a: + ( Vm-- V;)  cr~ (21) 

The dashed line above the variable indicates 

average values. These average values can be 

determined as follows: 

1 L 
-aT=-Ef a:& (22) 

fL+%:a (23) 
,~ .: L 

a,~ : Emec (24) 

The normalized longitudinal Young's modulus 

of the composite Ec/Em can then be calculated. 

The final result for the modulus enhancement can 

then be given by Eq, (25) as below. 

E~ E:V: 
E~ = Em + inh(ns)  + V,, 

4 V:* [A*  (cosh(n*s*)  - 1 )  
Emecn*s* 

+ B*sinh  ( n ' s * )  ] (25) 

it can be found that the above normalized 

modulus represents the composite strengthening 

effect which gives an elastic behavior. This phe- 

nomenon is shown in Fig. 4 which describes the 
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Fig. 4 Conceptual Schematic of ROM, SL, and 
MSL models. 

concept of ROM, SL, and MSL models. 

On the other hand, the matrix stress between 

fiber ends becomes greater and this stress will be 

reached at the yield point of the matrix. This 

localized matrix yielding is initiated in the vicin- 

ity of the fiber ends and occurs at the applied 

stress below matrix yield stress because of the 

stress concentration. Thus, the elastic propor- 

tional limit strain Ecp will be reached when ~7i 

becomes tbe matrix yield stress o'~y as applied 

from Eq. (20). Therefore, this relation can be 

derived as follows. 

~ m y  (26) 
~cp- (E,. + C) 

Thus, the elastic proport ional  limit of the com- 

posite stress, ~co is given by 

dcp = '~c~cv 

_ Ec 
(Era+ C) Gmy (27) 

3. Finite Element Modeling for 
Verification 

The application of  FEA to composites requires 

careful attention to the geometry of the mesh used 

in analysis and design. In a discontinuous fiber 

reinforced composite, appropriate modeling is 

important in understanding the deformation evo- 

lution in the matrix as well as the overall compos- 

ite stress-strain behavior except in very low fiber 

volume fraction cases (Agarwal et al., 1974), The 
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[ I I I l l l l l i l  iiiii  iii ililt 

z 
V . . . . .  I I I  

Fig. 5 Finite element mesh of the axisymmetric 
RVE (V~-=20%). 

2-D multiple fiber model used to develop the 

physical concepts was considered first for the 

aligned fiber geometry. 

In this study, the FEA computations were 

performed using four-noded axisymmetric isopar- 

ametric elements (Cook et al., 1989) using the 

ANSYS program (Kohnke, 1989). Provided the 

fiber or whisker distribution is perfectly uniform, 

a single fiber model as RVE can be selected as 

mentioned above. The RVE selected along with 

the corresponding mesh patterns are shown in 

Fig. 5. The RVE is based on a finite concentra- 

tion of 20% fibers which is quite common (see 

Fig. 5). The RVE configuration is similar to that 

used previously by Agarwal et al. (1974) and 

Kim and Chang (1995) for a uniform distribu- 

tion of fiber with an end gap value equal to the 

transverse spacing between fibers. In other words, 

g is equal to ( R - r ) .  This allows for comparison 

of volume fraction effects by both F E A  and the 

analytical model developed in the previous sec- 

tion. For  boundary conditions, constraint condi- 

tions were imposed by requiring that the longitu- 

dinal cell boundary (side wall) and the cell end 

should be undistorted during deformation as im- 

plemented in the previous work (Kim, 1990). 

Material properties selected are AI 2124 as the 

matrix and SiC whisker as the reinforcement. For  

the present system, typical values are Em=67.2 

GPa, u,,=0.33 for the matrix and E / = 4 8 0  GPa, 

u /=0.17 for the reinforcement (Nair et al., 1985). 

4. Results and Discussion 

In the previous paper (Kim, 1994), axial tensile 

stress, interfacial shear stress, and fiber maximum 

stress in the fiber and matrix end region ( f ict i -  
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tious fiber) have been described in detail. The 

present results of the extended MSL model are 

now shown in what follows. 

4.1 Fiber end stress  and stress concentra-  
tion factor 

As mentioned previously, the tensile stress in 

the matrix end region in the SL model is assumed 

constant throughout the gap region and equal to 

the average matrix stress(=EmE~). In the MSL 

model, the fiber stresses are significantly higher 

than that in the SL model. These fiber stresses 

drop off to a finite interfacial value o'i at the fiber 

end. For finite fiber concentrations (Vj=20%) ,  
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Fig. 6 Stress concentration factor as a function 

of modulus ratio at ~c=0.1% in case of 
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End stress as a function of end gap size at 
~=0.1% in case of 1//=20%. 

the results are shown in Figs. 6 and 7. Here, 

numerical values were set as r = 1, L = 4 ,  g =  1, s 

=4,  s * = l ,  R / r = 2 ,  n=0.3897 and n*=1.0415. 

The axial stresses at the fiber end derived in the 

MSL model (equation (18)), which represents 

the stress concentration factor Kt, are shown in 

Fig. 6 as a function of EI/E, ,  for two fiber aspect 

ratio values in terms of the stress intensification 

ai/E,~cc, where Emsc is the average matrix stress. 

As shown in the Fig. 6, the results show remark- 

able agreement with the predicted FEA results. 

There are two fiber end stresses: the real fiber 

end stress ~r2, and the fictitious fiber end stress (re. 

The real fiber end stresses ai, are also dependent 

on the end gap size (the length of fictitious fiber) 

as shown in Fig. 7. As the end gap size is reduced, 

the end stresses are significantly enhanced. These 

fiber end effects become more dominant for stiffer 

fibers, and for small fiber-to-fiber spacing in the 

end gap region. Note from the previous paper 

(Kim, 1994), that the matrix stresses in the end 

gap region are larger than the average matrix 

stress, predicted by the SL model. Thus, fiber end 

gap stresses and ai increase as the fibers come 

close together along the axial direction. 

As shown in Fig. 7, o'e is the fictitious fiber end 

stress (i. e., stress at x = L + g ) .  Note that ~e~ 

E,~ec because of the isostrain boundary condi- 

tion, which means the fictitious fiber end stress 

must be equal to or greater than the matrix 

average stress Emec, since the fictitious fiber is, in 

reality, the region of  stress concentration. The 

fictitious fiber end stress ae increases as the end 

gap size is reduced. 

In comparison, as mentioned before., the SL 

model does not derive equations for the stresses in 

the matrix end gap (fictitious fiber) region. 

Consequently, it is found that o'~=E,~ec for the 

SL model case though it is the domain affected by 

stress concentration. When the matrix end gap 

size is increased indefinitely, o'~ from the MSL 

model approaches EmEc as expected. 

4.2 Longitudinal composite Young's Modulus 
prediction and comparison with other 
theories and experimental  data 

The overall increase in composite modulus Ec/ 
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E,~ (Eq. (25)) of  the MSL model is plotted in 

Fig. 8 for two aspect ratio values as a function of 

E~/Em, the ratio of fiber to matrix modulus. Also 

shown for comparison is the corresponding FEA 

results. Again, there is a remarkable coincidence 

between the MSL and FEA results. The result of 

Fig. 8 shows without doubt that the shear lag 

approach suitably modified by taking the fiber 

end region stresses into account provides correct 

modulus prediction when the aspect ratio is small. 

The dependence of  Ec/Em on the fiber aspect 

ratio for fixed El~Era is shown in Fig. 8. It is 

compared with the prediction of  SL, MSL, and 

FEA,  as well as with predictions of other elastic- 

ity theories, namely, the Tsai-Halpin  model 

(Halpin and Kardos, t976, Halpin, 1984) and the 

Eshelby model (Eshelby, 1957, Tandon and 

Weng, 1986). The prediction given by the model 

of Taya and Arsenault, who neglected stress 

intensification at fiber ends, is shown in Fig. 8. 

Their equation (Taya and Arsenault, 1989) for 
the modulus is 

i 
%) 
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Modulus Ratio (EfE=) 
The normalized composite proportional 
limit predicted by FEA and MSL based 
on small scale yielding as a function of 
the modulus ratio, Ej/E,~, for different 
gap sizes. 

Ec 
E,~ -- VmEm + V/Em + VIE~. 

l+(Em 1]tanh (ns) ] (28) 

The modulus results from their model are 

slightly higher than those of the original shear lag 

model, but still substantially underestimate the 

actual composite modulus. Superimposed on Fig. 

8 are the available experimental data for SiC 

whisker reinforced A1 alloys. Note that the MSL 

predictions agree most closely with FEA results. 

Therefore, it is found that the shear lag approach 

taking end effects into account is physically most 

realistic. All methods, except the SL model and 

the Taya-Arsenaul t  model, however, are reason- 

ably comparable with available data. The SL 

model and Taya-Arsenaul t  model is clearly an 

underestimation. However, as the aspect ratio is 

increased the predictions of  all models converge 

to the ROM predictions as expected. 

4.3 Small scale yielding predictions of 
composite 

Figure 9 shows the normalized composite pro- 

portional limit as a function of modulus ratio and 

unit ce]] geometry in the case of a fixed whisker 
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volume fraction and whisker aspect ratio. As can 

be seen in Fig. 9, the composite proport ional  limit 

decreases as the modulus ratio increases. Stress 

intensification at the tip of  the fiber or whisker 

results in small scale yielding in the composite 

prior to the matrix proport ional  limit. The small 

scale yielding is more enhanced for the case of 

smaller end gap ratio, or smaller RVE aspect 

ratio, in which case the stress concentrations are 

larger at fiber ends. Figure 9 also compares the 

MSL closed form predictions to numerical results 

from FEA. Good qualitative and quantitative 

agreement is obtained between the closed form 

and numerical predictions, at least on the smaller 

end gap size regions pertinent to actual compos- 

ites. As discussed previously (Kim, 1994), MSL 

predictions become more approximate as end gap 

sizes become large. Note that the experimental 

result falls in the range of the predicted values. 

5. Conclusions 

An extension of modified shear lag model has 

been rigorously studied. The results in modulus 

predictions of the present model were most close- 

ly matched with F E A  computations compared 

with those of  other models. It is evident that the 

inaccurate predictions of the original shear lag 

theory for small aspect ratio are due to its neglect 

of the influence of fiber end regions. It was found 

that the MSL model which is applicable to small 

scale yielding predictions associated with plastic 

deformation at fiber or whisker ends conforms 

with FEA predictions. It was also found that, 

when the fiber modulus increased or when the 

end gap size is reduced, the localized plasticity in 

the vicinity of fiber ends is initiated before the 

applied stress reaches the matrix yield stress. 
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